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Abstract. The analytical hierarchical process (AHP) is a multi-criteria, decision-
making process that has demonstrated to be of a high utility to achieve complex
decisions. This work presents a method to apply it in grupal decisions, where the
weights that each user assigns to the criteria are different and private. A combina-
tion of consensus process and gradient ascent is used to reach a common agree-
ment that optimizes the utility of the decision using the information exchanged in
the local neighborhood exclusively.
The AHP problem is modeled through a multilayer network. Each one of the
criteria are negotiated by consensus with the direct neighbors on each layer of
the network. Furthermore, each node performs a transversal gradient ascent and
corrects locally the deviations from the personal decision to keep the best option.
The process locates the global optimal decision, taking into account that this
global function is never calculated nor known by any of the participants. If there
is not a global optimal decision where all the participants have a not null utility,
but a set of suboptimal decisions, they are automatically divided into different
groups that converges into these suboptimal decisions.

Keywords: complex networks, consensus, gradient descent, analytical hierarchi-
cal process, agreement

1 Introduction

The Analytic Hierarchical Process (AHP) is a muli-objective optimization method. The
decision makers provide subjective evaluations regarding to the relative importance of
the different criteria and the preference of each alternative for each criteria [12]. The
result is a ranking of the considered alternatives that includes the relative score assigned
to each one of these alternatives. The main advantage of this process is that it allows
(i) to organize the information in a efficient and clear way, even for complex problems;
and (ii) synthesize and visualize the effects of changes in the levels or preferences.
Furthermore, it is possible to measure the consistence of the model, since a perfect
consistency is very difficult to be achieved due to the subjectivity introduced to judge
the relative importance of each criteria.

The AHP can be used for a single used to take a decision, but also for a group of
people, such as a committee or a group of experts, to achieve a common agreement.
There are works that extends the original AHP problem. But these approaches assume



Fig. 1: Example of criteria hierarchy for a AHP

that all the actors are able to exchange information. This work proposes a method for
group decision making based on AHP, where the participants are connected though a
network and they interact exclusively with their direct neighborbors. A combination of
consensus [18] and gradient ascent is used as optimization method [14].

The proposed solution considers each criterion as a layer in a multiplex network.
A consensus process is performed in each layer, trying to achieve a common decision
for the corresponding criteria for all the participants. Simultaneously, a gradient ascent
is executed across the layers, trying to keep the preferred value for each one of the
participants in the decision. This joint process converges to the desired, agreed decision.
This decision is the optimal decision of the group if some conditions are fulfilled.

The rest of the paper is organized as follows. Section 2 explains the related tech-
niques that have been combined and used to define the final proposed method to solve
AHP in a decentralized and distributed way. The method is detailed and analyzed in
Section 3 and, finally, Section 4 shows the results. Section 5 closes this work with the
conclusions.

2 Related works

2.1 The AHP process

The AHP begins with the definition of the criteria used to evaluate the alternatives,
organized as a hierarchy. The importance of each criteria is defined through its weight
wα ∈ [0, 1]. For example, let’s assume that a new leader has to be chosen among three
candidates: Tom, Dick and Harry. To evaluate them, their age, experience, education and
charisma are going to be considered. The criteria hierarchy and the weights associated
to each criterion α are show in Figure 1.

Once the criteria are defined, a pairwise matrix is created, assigning a relative judge-
ment or preference value to each pair of alternatives. The value aij represents the
preference of the alternative i over the alternative j for the considered criteria, and
aij = 1/aji.



Tom Dick Harry Priority (lαi )
Tom 1 1/4 4 0.217
Dick 4 1 9 0.717

Harry 1/4 1/9 1 0.066

Candidate Exp Edu Char Age Goal
Tom 0.119 0.024 0.201 0.015 0.358
Dick 0.392 0.010 0.052 0.038 0.492
Harry 0.036 0.093 0.017 0.004 0.149

Table 1: (left) Local priority matrix with the relative importance of each candidate regarding to
their experience. (right) Final priorities for the selected candidates. Dick is selected candidate,
with the higher global value

From this pairwise matrix, the local priority lαi is calculated, which defines the pref-
erence of the alternative i for the criterium α. The local priority is calculated as the
values of the principal right eigenvector of the matrix.

Finally, all the local priorities are synthesize across all the criteria in order to cal-
culate the final, global priority pi for each alternative. There exist many methods to
calculate the priorities. The most usual ones are the mean of the rows of he pairwise
matrix to calculate lαi , and the weighted average pi =

∑
wαlαi for the global priority,

There are approaches to extend AHP into grupal decision problems, but they are
centralized solutions and use complete information. In this work, the participants are
connected through a network that bounds the possible information exchanges. An agree-
ment in the final decision is reached through a combination of a consensus process and
a gradient ascent (see Figure 2)

2.2 Consensus on Networks

Consensus means reaching an agreement on the value of a variable which might rep-
resent, for example, a physical quantity, a control parameter, or a price. Agents are
connected through an acquaintances network whose topology constraints the possible
interaction between them. This is one of the most promising research subjects in the
MAS area that is currently emerging [8, 9, 11, 13, 21].

The theoretical framework for solving consensus problems in agent networks was
formally introduced by Olfati–Saber and Murray [17, 18]. Let G be a graph of order
n with the set of entities E as nodes. Let (G,X) be the state of a network, where
X = (x1, . . . , xn)

T ∈ Rn and xi is a real value that is associated with the node
ei ∈ E. A consensus algorithm is an interaction rule that specifies the information
exchange between the agents and all of their neighbors in the network in order to reach
the agreement. Consensus is reached in the network when x1 = . . . = xn. It has been
demonstrated that a convergent and distributed consensus algorithm in discrete-time
exists and it converges to the average of their initial values.

xi(t+ 1) = xi(t) + ε
∑
j∈Ni

(xj(t)− xi(t)) (1)

where Ni denotes the set formed by all nodes connected to the node i (neighbors of i)
and ε is the step size, 0 < ε < mini 1/di, being di the degree of node i. This expression,
when is executed by the agents, converges to the average of their initial values.



An interesting modification of the consensus introduces weights in the agents, which
represent their importance in the system. Let w = (w1, w2, . . . , wn)

T be a vector with
the weight associated to each node. The following algorithm (see [17], p. 225) can be
used to obtain the value of the weighted average consensus

xi(t+ 1) = xi(t) +
ε

wi

∑
j∈Ni

(xj(t)− xi(t)) (2)

where Ni denotes the set formed by all nodes connected to the node i (neighbors of i)
and ε is the step size. The algorithm converges to the weighted average of the initial
values of the state of each agent xi(0) if ε < mini di/wi, being di the degree of node
i [19].

Other works have extended the consensus algorithm for its application in large-
scale systems [5], for its usage as a clustering technique [15], for treating problems
derived from a failure in communications [10], or for applications in arbitrary directed
graphs [7]. However, the application of the consensus algorithm to dynamic networks,
where participants may enter and leave during the consensus process, is still an open
issue.

2.3 Distributed Gradient Descent

Consensus leads to the average value of the network. But agreement processes fre-
quently involve the optimization of some global utility function. Centralized meth-
ods usually require data fusion and distribution along the network, which supposes a
high computational and communication cost when the systems scale. Decentralized ap-
proaches take advantage of scalability, adaptation to dynamic network topologies and
can handle data privacy. Coupled optimization problems can be solved using a variety
of distributed algorithms. A classical way is to iteratively refine an estimate of the opti-
mizer using incremental subgradient methods [1]. It is used in static networks, where the
topology does not change during the process. Matei [16] studies how the degree distri-
bution in random networks affects the optimal value deviation, defining some metrics to
evaluate the quality of the approximated solution. One way of accelerating the consen-
sus process has been proposed by Pereira [20]. This new method is applied to random
sensor networks. It is based on the study of the network spectral radius, requiring a
complete view of the network to obtain that radius. The relation among the connection
probabilities in a random network and the convergence speed has also been studied [20].
This relation also determines the optimal ε value that minimizes the convergence time.
The work of F. Zanella [2] applies the Newton–Raphson method to distributed convex
optimization problems. To minimize the optimization function, it uses a consensus pro-
cess that converges to the exact solution in contrast to the subgradient–based methods.
This last work has been extended to consider asynchronous transmission [3] and the
multi-dimensional case in order to optimize an n-dimensional function [4].

The combination of consensus and gradient models can be expressed as a two step
process [14]

xi(t+ 1) =
∑
j

wijxj(t)− α∇fi(xi(t)) (3)



Fig. 2: (Left) Multilayer network example with 20 agents and 5 layers. (Right) Example of net-
work, where each agent has its own values for the criteria an a preferred option.

where W = [wij ] is a symmetric, double stochastic matrix (note that it has the same
properties demanded to the consensus process to converge) and ∇fi(xi(t)) performs a
gradient descent to minimize a cost function.

2.4 Multilayer networks

Multilayer networks are a recent formalism created to model the phenomena that ap-
pears in complex networks in a more realistic way. Usually, relations do not occur iso-
lated in one network and notions such as network of networks, multilayer networks,
multiplex networks or interdependent networks are defined. In multilayer networks,
links of different type exist among the nodes. For example, in a group of people, links
representing friendship, working relations or family ties can be defined. Or in a commu-
nication model, different media, such as phone and mail, can be considered. Each one
of this different links form a network in one layer. The interdependence among layers
is defined through cross links between the nodes that represent the same entity in each
network. These cross links models the transference of information that passes from one
layer to the others.

A multilayer network (see Figure 2, left) is formally defined [6] as a pair M =
(G,C) where G = {G1, . . . , Gp} is a family of graphs Gα = (Eα, Lα),∀α ∈ [1, p]
called layers, and C = {Lαβ ⊆ Eα × Eβ ,∀α, β ∈ [1, p], α 6= β} is the set of
connections between two different layers Gα and Gβ . The elements of each Lα are
called intralayer connections and the elements of C are the interlayer ones or crossed
layers. The characteristic of the multilayer network is that all the layers have the same
set of nodes E1 = . . . = Ep = E and the cross layers are defined between equivalent
nodes Lαβ = {(eα, eβ),∀e ∈ E;α,β ∈ [1, p]}.

In the present work, multilayer networks are used to represent the different criteria
that form the decision. Each criterion will be negotiated in one layer.



3 Decentralized AHP using Consensus in Multiplex Networks

Lets consider the participants connected in an undirected network. The topology is not
relevant, but all the nodes must be connected in one component. Lets consider only the
criteria that are the leafs of the hierarchy defined for the AHP problem, with

∑
wα = 1,

different and private for each one of the participants. Lets create a multilayer network,
where each layer represents one of the final criteria. Each layer is weighted using the
weight defined for the criteria. For example, the problem exposed in Fig. 1 has 4 criteria:
experience, education, charisma and age. Therefore, a network with 4 layers is created.
Furthermore, the weights associated to each one of them are 0.547, 0.127, 0.270 and
0.056 respectively. An utility function can be defined for each preference of the par-
ticipants using a gaussian function with mean lαi and standard deviation 1 − wαi (see
Section 3.1). This function is used by the participant to perform the gradient ascent,
trying to keep as near as possible to its preferred distribution.

Each participant has its own criteria and the goal of the system is to agree the best
candidate according to all the agents involves in the decision. Therefore, a consensus
process is executed in each layer in order to find the weighted average. But this process
considers the criteria as independent and it does not converge in the value that optimize
the decision. The combination of the consensus process with a gradient ascent, as it is
defined in Eq. 4, corrects the deviation produced by the consensus and each participant
tries to maintain the decision that maximizes its own local utility. This decentralized
process leads to a consensus value near to the global optimum, considered as the sum
of the local utility functions. Observe that this global utility function is never calculated
and the participants reach this value exchanging information with their direct neighbors.

xαi (t+ 1) = xαi +

︷ ︸︸ ︷
ε

wαi

∑
j∈Nαi

(xαj (t)− xαi (t))+ϕ∇ui(x1i (t), . . . , x
p
i (t))︸ ︷︷ ︸ (4)

The result of the process is a common and agreed priority for the alternative evalu-
ated in each layer. All the alternatives can be evaluated at the same time using indepen-
dent consensus process if a vector of preferences is exchanged instead one alternative
at a time.

If the global utility function is a smooth one and all the participants have an utility
ui > 0 for any final decision, the proposed method converges to the optimal decision
for the group. But if there is no point in which all the participants have a positive utility,
the resulting global utility function will have one (or more that one) local maximum that
may alter the convergence process. In those cases, we allow the nodes to break the links
with those neighbors that are pulling them to an undesired area. To do that, it is enough
with breaking the communications and stopping exchange information with them. In
this case, the network can be split in several groups and each one of them will reach a
different decision.

The advantage of this distributed approach is that avoids the bottlenecks problems
that arise in mediated solutions. Individual agents are not conscious of a final, global
solution, but of the convergence to an agreed compromise among its near neighbors.



Furthermore, the system is scalable since new nodes can be added without additional
notifications to the rest of the network.

3.1 Utility Function

Utility functions have some common properties in any optimization problem: indepen-
dence, completeness, transitivity and continuity. As we propose a model with coopera-
tive agents, we’ll assume that the utility functions have a maximum and this maximum
will be the starting point for all the agents. Furthermore, the function must be a de-
creasing one. The normal distribution fulfills all this properties. Therefore, it has been
the selected one for the utility function ui of the agents. We can assume that agents are
initially situated in its maximum value, which corresponds with the mean value of the
utility function. The weight assigned to the term can be used in the dispersion measure.
An agent does not desire changes in its more relevant term. Therefore, any change in
its value must decrease drastically its utility. On the other hand, the agents would allow
changes in terms with low importance, which might slightly decrease their utilities. In
the case of a normal distribution, the standard deviation is the parameter that rules this
behavior. If we use σαi = 1 − wαi we obtain the desired behavior. The utility function
is defined as follows:

uαi (x
α
i ) = e

− 1
2

(
xαi −lαi
1−wα

i

)2

(5)

All this individual functions are combined in one unique utility function for the
agent.

ui(xi) =
∏
α

uαi (x
α
i ) (6)

This definition corresponds to a renormalized multi-dimensional gaussian distribution
such that the maximum utility for the agent i is ui(xi(0)) = 1.

The global utility of the system is the sum of the individual utilities of the agents.
This value is never calculated in the system directly and the function is known by none
of the participants in the agreement.

U =
∑
i

ui(xi) (7)

4 Application example

Lets consider a group of 9 agents that are going to take a decision using AHP. A bi-
dimensional example has been chosen to be able to represent it graphically, so just 2
criteria will be considered. Figure 3 shows the utility function calculated from the initial
preferences of each participant.

Figure 4 shows the initial and final status of the process. When the combined pro-
cess stops, all the participants have reached the same point, which corresponds to the
common decision agreed by the agents. For this solution to exist, the only condition is
that all the participants have a positive utility ui > 0 along the complete solution space.



Fig. 3: (Left) Local utilities ui(xi) as defined in Eq. 6 from the AHP criteria for each of one the 9
participants. (Right) Final global utility function U (Eq. 7) to locate the optimal decision, defined
as the sum of the individual, local utility functions. These functions is not calculated, nor known
by the participants, but the process converges to the maximum of this function.

Fig. 4: Initial and final states for a decision in a group of 9 participants using two criteria. An
agreed solution exists and it is located correctly by the group using local information only.

Figure 5 shows the evolution of the value for each criterion (left and right) for each
one of the participants (in a different colour) along the process. It converges to the final
decision. If these values are considered as the x and y coordinates, it matches with the
point that corresponds to the solution in Figure 4.

Nevertheless, when this condition is not fulfilled when some of the participants has
an utility equal to zero in some areas of the solution space. In that case, the shape of the
global utility function will show peaks and valleys, with local optimal values. Then, the
convergence to the optimal solution is not guaranteed and, as it is shown in Figure 6,
the process halts on any value, depending on the initial preferences and the distribution
of the utility functions over the solution space.

Our proposal to solve this additional problem is to allow break links among the
participants. When a participant detects that the solution guides towards a point with
zero-utility, the agent can decide to break the link to those neighbors who are pulling
from the preferences. As Figure 7 shows, in this case the network is broken into groups,



Fig. 5: Evolution of the values for each criteria fora each one of the participants. The convergence
is guaranteed if ∀i ui > 0 in all the solution space

Fig. 6: Example of convergence to a suboptimal solution because participants refuses to move
towards the best solution for the group since its has zero-utility for some individual agent.

each one of them converges to a different agreement. The optimal decision is located by
the group formed by those participants whose utility function is positive in the best so-
lution. Actually, this solution is reached if the agents with zero-utility are just removed
from the system. Despite doing so, we allow this participants to reach another decision
forming a separate group.

Figure 8 shows the evolution of the criteria in such a case. It can be clearly observed
how more that one decision is taken. In this case, the network is divided into 4 groups:
the bigger one arrives to the best decision, and another group formed by two agents
arrives to another private agreement. Finally, another two participants remain isolated.
The dendrogram of this figure shows the group formation, and the last graphic shows
the global utility value, taking into account the sum of the solutions reached by the
different groups.

Finally, the performance of the algorithm has been analyzed using networks of dif-
ferent sizes. The obtained results are shown in Figure 9. Experiments were run in a 3.2
GHz Intel Core i5, with 8Gb of RAM. Random networks from 100 to 1000 nodes have



Fig. 7: Initial and final states for an AHP process allowing to break links and reconnect to near
neighbors. This solutions guarantees the convergence of a subgroup to the best possible decision,
along with another agreements around suboptimal solutions.

Fig. 8: (Top) evolution of the criteria and convergence into separated groups. (Bottom) Group
division and global utility obtained by this process

been generated, with 10 repetitions of each size. The AHP process has been executed
over these networks and the obtained execution time has been averaged. The execution
time takes into account the AHP process exclusively. The time needed to create the
network and define the individual weights for the different criteria and alternatives are
not included. The experiments show a quadratic cost for the algorithm in the studied



network sizes. Bigger networks need to be analyzed. The main drawback of the current
implementation is that the calculation of the ϕ parameter (see Equation 4) to guarantee
the convergence of the method is a centralized one (the ϕ parameter is related with the
value of the Lipschitz constant for each utility function) and the cost is too high to be
calculated in bigger networks (beyond 4 magnitude orders with respect to the execution
time).

Fig. 9: Execution time of the algorithm with different network sizes

5 Conclusions

This work has presented a method based on a combination of consensus and gradient
ascent to solve group AHP in a decentralized environment, where the participants in
the decision making process exchanges their preferences with their direct neighbors
to reach an agreement that allows the team to select the alternative with the highest
utility for the group. This work can be easily extended to the case of having networks
of preferences (ANP) or the case of changes in the local priorities or the weights of the
criteria during the process.
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